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ABSTRACT 
A new closed-form analytical model is developed to 

predict transient laminar forced convection inside a circular 
tube following a time-wise step change in the wall heat flux. 
The proposed all-time model is based on a blending of two 
asymptotes; i) short-time asymptote: transient pure conduction 
in an infinite cylinder and ii) long-time asymptote: steady-state 
convective heat transfer inside a circular duct. Different fluid 
velocity profiles are taken into consideration and the model 
covers: i) Slug Flow (SF); ii) Hydrodynamically Fully 
Developed Flow (HFDF); and iii) Simultaneously Developing 
Flow (SDF) conditions. The present model is developed for the 
entire range of the Fourier and Prandtl numbers. As such, short- 
and long-time asymptotes for the fluid bulk temperature are 
obtained. The Nusselt number is defined based on the local 
temperature difference between the tube wall temperature and 
the fluid bulk temperature. It is shown that irrespective of the 
velocity profile, at the initial times the Nusselt number is only a 
function of time. However, at the steady state condition it 
depends solely upon the axial location. In addition, during the 
transient period, the Nusselt number is much higher than that of 
the long-time response. We also performed an independent 
numerical simulation using COMSOL Multiphysics to validate 
the present analytical model. The comparison between the 
numerical and the present analytical model shows good 
agreement; a maximum relative difference less than 9.1%. 

 
1. INTRODUCTION 

Developing an in depth knowledge of transient heat 
transfer has drawn significant attention recently with the 
emergence of sustainable energy applications. In most cases, 
considerable thermal transients are arising from unsteadiness 
and dynamic operating conditions in the characteristics of heat 

transfer equipment. Generally, processes such as start-up, shut-
down, power surge, and pump/fan failure impose such 
transients [1–4].    

The origin of thermal transient in sustainable energy 
applications includes variable thermal loads of:  i)  thermal 
solar panels, commonly used in Thermal Energy Storage (TES) 
systems; ii)  power electronics of solar/wind/tidal energy 
conversion systems; iii) power electronics and electric motor of 
Hybrid Electric Vehicles (HEV), Electric Vehicles (EV), and 
Fuel Cell Vehicles (FCV). 

One of the major issues facing renewable energy systems is 
the inherent intermittence subjected to daily variation, seasonal 
variation, and weather conditions. As such, the power 
electronics of the sustainable energy conversion systems and 
TES systems associated with the thermal solar panels undergo 
dynamically varying thermal loads. Thus, these systems operate 
periodically with time and never attain a steady-state condition.  
Furthermore, the hybrid powertrain and power electronics 
electric motors (PEEM) of the emerging technology of HEVs, 
EVs, and FCVs endure dynamic thermal loads as a direct result 
of driving cycles and environmental conditions. 
Conventionally, cooling systems are designed based on a 
nominal steady-state “worst” case scenario, which may not 
properly represent the thermal behavior of various applications 
or duty cycles. In-depth knowledge of the instantaneous 
thermal characteristics of thermal components will provide the 
platform needed to design and develop new efficient and 
compact heat exchangers to enhance the overall efficiency and 
reliability of TES, sustainable energy conversion systems, and 
PEEM; which in case of the HEV/EV/FCV leads to improved 
vehicle efficiency and fuel consumption, and reducing weight 
and emission [5–12]. 
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In all the above-mentioned applications, transient heat 
transfer occurs inside a component, heat exchanger or a 
heatsink under arbitrary time-dependent heat flux. This can be 
represented by unsteady forced-convective tube flow. As such, 
we have conducted a series of studies to find the transient 
thermal response of the tube flow under arbitrary time-
dependent heat flux. The first step to address the transient heat 
transfer under dynamically varying heat flux is to solve the 
governing equations for a time-wise step heat flux which is the 
case in this paper. In our subsequent papers, we will consider 
the fluid flow response under dynamically varying heat flux by 
applying a superposition technique to the results of this paper.  

  
1.1. PERTINENT LITERATURE 

A number of studies were conducted on transient forced 
convection caused by time-wise variations of tube wall 
temperature or heat flux. Sparrow and Siegel [13] investigated 
transient heat transfer in the fully developed laminar flow in 
circular tubes. Siegel and Sparrow [14] performed an analysis 
for transient laminar heat transfer in the thermal entrance region 
of a flat duct whose bounding surfaces were subjected to an 
arbitrary time variation of temperature or heat flux. Siegel [15] 
studied the laminar slug flow inside parallel plates and circular 
tubes following a step change in heat flux and tube wall 
temperature. Improvements on the above solutions were made 
by Siegel [16] for laminar flow. An integrated form of the 
energy equation was solved by the method of characteristics. A 
smooth transition was noted between the transient and steady-
state conditions. Hudson and Bankoff [17] performed an 
analytical study to find an asymptotic solution for unsteady 
Graetz problem under a stepwise wall temperature. A series 
solution was presented to find the temperature distribution 
inside the fluid and the wall heat flux. Lin and Shih [18] 
applied the instant-local similarity approach to study transients 
for forced convection inside circular tubes and parallel plates. 
Cotta and Ozisik [19] analyzed transient laminar forced 
convection inside parallel plates and circular ducts under 
stepwise variations of wall temperature. Most of the pertinent 
papers on transient forced convection under a step heat flux are 
analytical-based; a summary of the literature is presented in 
Table 1. Our literature review indicates: 
• There is no compact all-time model to predict the fluid flow 

response under a step heat flux. 
• There is no compact model to predict the steady-state heat 

transfer of slug flow condition. 
• The existing models are in form of complex algebraic 

expressions and series solutions; a large number of terms 
are necessary to find the accurate results.  

• There is no study on the transient forced convection of tube 
flow with developing velocity profile i.e. Simultaneously 
Developing Flow (SDF).  
 
In the present study, a compact analytical model is 

proposed to predict the asymptotic fluid bulk temperature 
inside a circular tube. Different velocity profiles are taken into 
consideration and an asymptotic approach is adopted to develop 

a closed-form all-time model for the Nusselt number that 
covers both short-time and steady-state asymptotes. The present 
all-time model predicts the Nusselt number for the entire range 
of the Fourier and Prandtl numbers. In most existing studies 
[13–18], the transient thermal behavior of a system is 
determined based on the dimensionless wall heat flux, Q& , 
considering the difference between the local tube wall and the 
initial fluid temperature. In the present study, we define the all-
time Nusselt number based on the local temperature difference 
between the tube wall and the fluid bulk temperature at each 
axial location. We are of the opinion that our definition has a 
better physical meaning. 

To develop the present analytical model the fluid flow 
response for a step heat flux is taken into account [15]. Various 
hydrodynamic conditions are considered including i) Slug Flow 
(SF); ii) Simultaneously Developing Flow (SDF); and iii) 
Hydrodynamically Fully Developed Flow (HFDF). Short- and 
long-time asymptotes are developed to determine the Nusselt 
number and the fluid bulk temperature for the aforementioned 
cases. The short-time asymptote is corresponding to transient 
pure conduction inside an infinite cylinder, whereas the long-
time asymptote is attributed to the steady-state forced 
convection inside a circular tube. Consequently, the present 
compact all-time model is developed based on the blending of 
the obtained asymptotes. The present compact model covers the 
entire range of the Fourier and the Prandtl numbers.    

    
2. PROBLEM STATEMENT 

Laminar fluid flow inside a circular tube is considered to 
investigate the transient forced convective tube flows following 
a step change in the wall heat flux. Figure 1 shows a circular 
tube of diameter � which is thermally insulated in the first sub-
region, 0x ≤ , and is heated in the second sub-region 0x > . The 
tube and fluid are assumed to be initially isothermal at 
temperature 0T . The wall at the second sub-region is given an 
instantaneous step in heat flux, ( )q t′′ , which is maintained 
constant  thereafter. It is also assumed that the entering fluid 
temperature and the first sub-region are maintained at 0T
throughout the heating period. The second sub-region may be 
long enough so that the fluid flow can reach thermally fully 
developed condition along this section, see Fig. 1. Two extreme 
conditions are taken into consideration for the inlet velocity 
profile; this will cover the full range of velocity distribution. As 
such, Slug Flow (SF) and Hydrodynamically Fully Developed 
Flow (HFDF) conditions are assumed for the inlet velocity 
profile of the heated section. The assumed inlet velocity 
profiles are illustrated in Fig. 2a, b. In addition, to model a 
more realistic tube flow, Simultaneously Developing Flow 
(SDF) or the combined entrance region is also considered. In 
this case, both velocity and temperature profiles are being 
developed. In fact SDF condition can model the actual thermal 
and hydrodynamic behavior of the fluids with finite Prandtl 
numbers [20].  
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 Table 1: Summary of the existing analytical models for unsteady, internal convective heat transfer 

Author Boundary condition 
and velocity profile Geometry Notes 

Sparrow and Siegel [13] 
                      

Step wall temperature/ heat flux 
Fully developed flow Circular duct Algebraic expressions for the 

tube wall temperature/heat flux 

Siegel and Sparrow [14] Step wall temperature/heat flux 
Fully developed flow Flat duct Algebraic expressions for the 

tube wall temperature/heat flux 

Siegel [15] Step wall temperature/ heat flux 
Slug flow Circular/flat duct Series solutions to find the temperature 

distribution inside the fluid. 

Siegel [16] Step wall temperature 
Fully developed flow Circular duct Series solutions to find the temperature 

distribution inside the fluid. 

Hudson and Bankoff  [17] Step wall temperature 
Fully-developed flow Circular duct Series solutions to obtain the 

temperature distribution inside the fluid. 

 Lin and Shih [18] Step wall temperature 
Fully-developed flow Circular duct 

Similarity solution to find the Nusselt 
number; valid only near the tube 
entrance. 

Cotta and Ozisik [19] Step wall temperature 
Fully-developed flow Circular/flat duct 

Similarity solution to find the Nusselt 
number; a large number of eigenvalues 
needed to obtain accurate results. 

 
It is intended to determine the evolution of the tube wall 

temperature, fluid bulk temperature and the Nusselt number as 
a function of time and space for the entire range of the Fourier 
number. As such, this study aims to propose easy-to-use 
compact relationships as all-time models representing the 
thermal behavior of the fluid flow from transient to steady-state 
conditions.  

 
 

 

 
(a) 

 
(b) 

Figure 2. Schematic of the inlet velocity profile for 
(a) Slug Flow (SF) and (b) Hydrodynamically Fully 

Developed Flow (HFDF). 
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2.1. GOVERNING EQUATIONS 
The energy equation for a fluid flowing inside a circular 

duct in this instance is shown by Eq. (1): 

                     

1T T Tu r
t x r r r

α∂ ∂ ∂ ∂ + =  ∂ ∂ ∂ ∂ 
                        (1) 

It is convenient to non-dimensionalize Eq. (1) by the 
following dimensionless variables: 

2

tFo
R
α

=  4

Re .PrD

x
DX =  

0

r

T T
q D

k

θ
−

= ′′  r
R

η =  

 
where Fo is the Fourier number and ReD is the Reynolds 
number. It should be noted that the mean fluid velocity, mu , is 
defined as: 

                                
2

0

2 R

mu urdr
R

= ∫                                 (2) 

For the case of Slug Flow (SF), the velocity distribution 
and the energy equation can be written as follows:   

                             ( , ) .mu r u constη = =                            (3) 

                         

1
Fo X
θ θ θη

η η η
 ∂ ∂ ∂ ∂

+ =  ∂ ∂ ∂ ∂ 
             (4) 

Similarly for the case of Hydrodynamically Fully 
Developed Flow (HFDF), the velocity distribution and the 
energy equation can be written as follows: 

                            
( )2( ) 2 1mu uη η= −

 
                              (5) 

                         
( )2 12 1

Fo X
θ θ θη η

η η η
 ∂ ∂ ∂ ∂

+ − =  ∂ ∂ ∂ ∂ 
              (6) 

Consequently, Eqs. (4) and (6) are subjected to the following 
initial and boundary conditions: 

( ), ,0 0Xθ η =  Initial condition, 

( )0, , 0Foθ η =  Entrance condition, 

( )
1

1/
2η

θ η
=

∂ ∂ =  Heat flux at the tube wall  
for 0Fo > , 

( )
0

/ 0
η

θ η
=

∂ ∂ =  

 

 
Symmetry at the center 
line. 
 

(7) 

 
 
 

3. MODEL DEVELOPMENT 
A new analytical compact model is developed considering 

two asymptotes; i) short-time and ii) long-time, steady-state, 
considering the following assumptions; 

• Incompressible  flow, 
• Constant thermo-physical properties, 
• Negligible viscous dissipation, 
• Negligible axial heat conduction, 
• No thermal energy sources within the fluid, 
• Uniform velocity profile along the tube for the Slug 

Flow (SF) condition, 
• Fully developed velocity profile, Poiseuille flow, for 

the Hydrodynamically Fully Developed Flow (HFDF) 
condition. 

• Developing velocity profile for the Simultaneously 
Developing Flow (SDF) condition. 

3.1. DEFINITION OF THE NUSSELT NUMBER 
In this study, the local Nusselt number is defined based on 

the local difference between the tube-wall and fluid bulk 
temperatures. 

               / 1( , )D
w m w m

q D kNu x t
T T θ θ

′′
= =

− −
            (8) 

Where wθ and mθ are the dimensionless wall and fluid bulk 
temperatures defined as follows. 

0w
w

T T
q D

k

θ
−

= ′′  0m
m

T T
q D

k

θ
−

= ′′  

In addition, mT is the fluid bulk temperature defined by Eq. (9). 

                             2
0

2 R

m
m

T uTrdr
u R

= ∫                (9) 

As indicated by Eq. (9) in order to evaluate the Nusselt 
number, it is crucial to find an expression to determine the fluid 
bulk temperature at the transient and steady-state conditions. 
We perform a one-dimensional transient energy balance on an 
infinitesimal control volume of the flow, Eq.(10), at an arbitrary 
location inside the heated part of the tube, 0x > , as illustrated 
in Fig. 3. 

 

    
( )

( )2 / 4

p m

m m
p m p p

mc T q D dx

T Tmc T mc dx c D dx
x t

π

ρ π

′′+ −

∂ ∂ + = ∂ ∂ 

&

& &
         (10) 

http://www.google.ca/url?sa=t&rct=j&q=poiseuille&source=web&cd=1&ved=0CFEQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FJean_Louis_Marie_Poiseuille&ei=7F8LUOKBEsW2rQH91rm1Cg&usg=AFQjCNEVyAegbsnuTsSh_nPWuxk_9uu7pA
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Figure 3. Transient energy balance on a 
differential control volume of the fluid flow.  

 
The above PDE, Eq. (10), is non-dimensionalized and 

solved by the method of characteristics. As such, a compact 
relationship is obtained for the short-time and long-time 
asymptotic fluid bulk temperatures at a given axial position, Eq. 
(11). 

 

         0 0m
m

Fo for FoT T
q D X for Fo

k

θ
→− 

= = ′′ → ∞
          (11) 

Therefore, by substituting Eq. (11) into Eq. (8), at a given 
axial position along the tube, the short-time, and long-time 
asymptotes of the Nusselt numbers can be defined as Eqs. (12) 
and (13), respectively. 
 
Short-time asymptote of the Nusselt number, 0Fo → : 

        ( ) ( )0 0
1lim , limD Fo D Fo

w

Nu t Nu x t
Foθ→ →= =

−
  (12) 

Long-time asymptote of the Nusselt number, Fo → ∞ : 

       ( ) ( ) 1lim , limD Fo D Fo
w

Nu x Nu x t
Xθ→∞ →∞= =

−
  (13) 

The all-time Nusselt number is indicated as ( ),DNu x t , 
while the short-time and steady-state Nusselt numbers are 
denoted as ( )DNu t and ( )DNu x , respectively. Regarding Eqs. 
(12) and (13), compact correlations can be proposed for the 
short-time and steady-state asymptotes of the Nusselt number 
once the dimensionless tube wall temperature is obtained.   

 
3.2. SHORT-TIME ASYMPTOTE, 0Fo →  

The solution to Eq. (4) proceeds as follows: consider a 
position x in the tube. After heating begins, the fluid which is at 
the entrance of the channel when the transient began will have 
travelled a certain distance down the tube. Beyond this distance 
there will not be any penetration of the entrance fluid which has 

been originally outside the tube. Hence, the heat flow in this 
region will not be affected by the fact that the tube has an 
entrance. The behavior in this region is then that of a tube of 
infinite length in both directions, and there is no variation of 
heat transfer quantities with distance x . Therefore, the fluid at 
any axial position undergoes the same transient heating process 
as that at any other axial position, and the effects of heat 
convection is zero [16]. This indicates that the convective term 
in the energy equation, Eq. (4), is identically zero. Thus, Eq. (4) 
will be reduced to a one-dimensional transient heat conduction 
case at the short-time response. Therefore, the solution of Eq. 
(4) is the same as that for suddenly applying a uniform heat 
flux at the surface of an infinite cylinder [15], i.e. Eq.(14).  

 

          ( ) 2
2

0
2

1 0

( )2 1,
8 ( )

n Fo n

n n n

J
Fo Fo e

J
β β ηηθ η

β β

∞
−

=

−
= + − ∑            (14) 

Where ( ), Foθ η is the short-time temperature distribution 
inside the fluid; nβ are the positive roots of 1( ) 0J β = and 

1( )J β are the Bessel functions of the first kind, respectively.  
Considering Eq.(14), the short-time dimensionless tube 

wall temperature and wall heat flux can be written as Eqs. (15) 
and (16), respectively. 

         
2

0
21

1

1
8

n Fo
w

w
n n

T T eFo
q D

k

β

η
θ θ

β

−∞

=
=

−
= = = + −′′ ∑              (15) 

           ( ) 2

0
2

1

1 1
2 12

8

n Fo
w w

n n

q R
kQ t

T T eFo
βθ

β

−∞

=

′′

= = =
−  

+ −  
 

∑
&         (16) 

Incropera et al. [21] proposed the following approximate 
easy-to-use relation for Eq. (15): 

                         
1

4w Fo
π πθ

−
 

= −  
 

              (17) 

For 0.2Fo ≤ , Eq. (17) can predict the results obtained by 
the exact solution, Eq.(15), with a maximum relative difference 
less than 2.1% [21].  

Now that the short-time tube wall temperature is obtained, 
we substitute Eq. (17) into Eqs. (12) and (16) , to find the short-
time asymptote of the dimensionless wall heat flux and the 
Nusselt number as follows. 

                   

( ) 0 0
1lim lim 0.5 0.5

2 4Fo Fo
w

Q t
Fo Fo
π π π

θ→ →

 
= = − ≈  

 
&    (18) 

( )q t′′  

m&  mT  m mT dT+  

dx  
x  
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( ) 0 0
1 1lim lim

1

4

D Fo Fo
w m

Nu t
FoFo

Fo

π
θ θ

π π

→ →= = ≈
− −

−

       (19) 

It should be noted that in Eq. (18) as 0Fo → , the term 

Fo
π is much higher than 

4
π . Therefore, the latter will drop at 

the initial times. Depicted in Fig. 4 are the variations of the 
dimensionless wall heat flux, Eqs. (16) and (18), versus the 
Fourier number for the Slug Flow (SF) condition. It is evident 
from Fig. 4 that almost 30 terms of the exact series solution, 
Eq.(16), should be used to obtain accurate results especially for 
the very small Fourier numbers. This happens since as 0Fo →
the exponential term in Eq. (16) is quite large compared to the 
other terms. However, as Fo → ∞  this term decreases 
significantly with time and it drops for the large Fo  numbers. 
In addition, there is a good agreement between the short-time 
asymptote, Eq.(18), and the exact series solution, Eq.(16), 
especially for the small Fourier numbers, 0.1Fo < . The 
maximum relative difference between the results is less than 
9.1% for 0.1Fo < which assures the validity of the developed 
short-time asymptote. 

 

 
Figure 4.  Short-time asymptote, Eq. (18), for the 

dimensionless heat flux of Slug Flow (SF), 
Simultaneously Developing Flow (SDF) and 

Hydrodynamically Fully Developed Flow (HFDF) 
conditions in comparison with the exact solution , Eq. 

(16). 
In addition, as also mentioned by Sparrow and Siegel [13], 

the transient response for the case of  Poiseuille flow is exactly 
the same as that of the slug flow condition. In other words, 
irrespective of the velocity distribution, at initial times the heat 
transfer process is dominated by pure conduction.  
 

Therefore, Eqs. (18) and (19) can be used as the short-time 
asymptotes for SF, HFDF, and SDF conditions. As previously 
mentioned, the short-time asymptote, ( )DNu t , is only a function 
of time, and it can be used to find the Nusselt number at any 
axial position along the tube for  small Fourier numbers, 

0Fo → .  
 

3.3. LONG-TIME ASYMPTOTE, Fo → ∞  
The long time asymptote, Fo → ∞ , for the tube flow is 

corresponding to the steady-state internal forced-convection 
heat transfer. In this case the transient term in Eq. (1) is 
identically zero, and the governing equations reduce to the 
classical steady Graetz problem. 

 Although the short-time asymptote was the same for all 
the conditions considered here, different steady-state 
asymptotes must be used. In broad terms, due to the presence of 
the convective term in the steady state form of the energy 
equation, different solutions are obtained for the considered 
cases here with different velocity profiles, including: i) Slug 
Flow (SF); ii) Hydrodynamically Fully Developed Flow 
(HFDF); and iii) Simultaneously Developing Flow (SDF) 
conditions. As such, a new compact model is developed in this 
study to predict the steady-state heat transfer of slug flow inside 
a circular tube. However for the other cases i. e. HFDF and 
SDF, compact relationships developed in the literature are used.    

 
3.3.1. Slug Flow (SF) condition 

Equation (4) is the dimensionless energy equation for the 
Slug Flow (SF) condition. The steady-state solution to this 
equation is given below [15]. 

2
2

0
2

1 0

( )2 1
8 ( )

n X n

n n n

J
X e for Fo

J
β β ηηθ

β β

∞
−

=

−
= + − → ∞∑    (20) 

where nβ are the positive roots of 1( ) 0J β =  and 1( )J β are the 
Bessel functions of the first kind, respectively.  By evaluating the fluid temperature at the tube wall, 
Eq.(20), the steady-state tube wall temperature is obtained.  

 

                     
2

21
1

1
8

n X

w
n n

eX
β

η
θ θ

β

−∞

=
=

= = + − ∑              (21) 

By substituting Eq. (21) into Eq.(13), the steady-state 
Nusselt number for the Slug Flow (SF) can be obtained.  

      

              ( ) 2

2
1

1 1lim
1
8

n
D Fo X

w

n n

Nu x
X e βθ

β

→∞ −∞

=

= =
−

− ∑
     (22) 

  Incropera et al. [21] proposed compact correlations to 
predict the series solution represented by Eq. (21) as follows. 

http://en.wikipedia.org/wiki/Jean_Louis_Marie_Poiseuille


 7 Copyright © 2013 by ASME 

            

1

0.2
4

1 0.2
8

w

for X
X

X for X

π π

θ

− 
 − <   = 


+ ≥

      (23) 

Substituting  Eqs. (23) into Eq. (13), the steady-state 
asymptotes for the Nusselt number for the Slug Flow (SF) is 
obtained: 

( )

11

0.2
4

8 0.2

D
X for XNu x X

for X

π π
−−   − − <   =    

 ≥
 

 
(24)a 

 (24)b 

    Figure 5 illustrates the variations of the steady-state Nusselt 
number versus the axial position.  

 
  

Figure 5. Obtained steady-state asymptotic 
Nusselt numbers, Eq. 24(a, b), for Slug Flow (SF) 

condition, and comparison with the exact solution, 
Eq. (22). 

As shown in Fig. 5, a good agreement is found between Eq. 
(24)a and the exact results for small axial positions, 0.2X < . It 
should be noted that for the Slug Flow (SF) condition, the 
energy equation is symmetric with respect to the Fourier 
number and axial position. Hence, again up to 30 terms are 
necessary to obtain accurate results for small axial positions, 

0.2X < . Moreover, when 0.2X ≥ , Eq. (24)b can satisfactorily 
predict the exact results.  The maximum discrepancy between 
the exact results, Eq.(22), and the ones predicted by the 
developed long-time asymptote, Eq. (24)b, is less than 2.1% as 
stated in [21]. 

 
 

3.3.2. Hydrodynamically Fully Developed Flow (HFDF) 
Churchill and Ozoe [24] proposed a compact correlation to 

obtain the Nusselt number for the entire range of axial position. 

                    
( )

3/1010
91 551

5.364
DNu x

X
π

− +   = +    
 

             (25) 

Therefore, Eq. (25) is considered as the steady-state 
asymptote for the Hydrodynamically Fully Developed Flow 
(HFDF) condition. 
 
3.3.3. Simultaneously Developing Flow (SDF) 

The most realistic model of the tube flow problem consists 
of solving Eq. (1) with a developing velocity profile. A closed-
form expression that covers both the entrance and fully 
developed regions was developed by Churchill and Ozoe [24].  

   

( )
1/62

1/33/2

1/ 2 1/32/3 2

4.364 1
29.6

19.041
Pr1 1

0.0207 55

DNu x

X

X

X

π

π

π

=
  +  

   

  
  
   +   

        + +        
             

      (26) 

 
Therefore, Eq. (26) will be considered as the steady-state 

asymptote for the Simultaneously Developing Flow (SDF) 
condition.  

 
3.4. NUMERICAL SIMULATION 

In Sections  3.2 and  3.3, we obtained the short-time and the 
long-time, steady-state, asymptotes of the Nusselt number for 
different hydrodynamic conditions. In this section, we 
investigate the thermal behavior of the flow under transition 
condition numerically. The transition period for each axial 
position is defined as the time span in which that position 
reaches the steady-state condition. In addition, the proposed 
analytical solutions and the asymptotes presented in the 
previous sections are validated by the present numerical 
simulation. 

COMSOL Multiphysics (version: 4.2a), a commercial 
FEM code, is used to simulate the thermal behavior of the tube 
flows, [25]. Stationary solver is used for the laminar flow inside 
the tube, whereas time dependent solver is selected for the 
laminar heat transfer inside the fluid. The numerical results are 
also used to combine the short-time and steady-state 
asymptotes to develop new general compact relationships. The 
obtained numerical data are non-dimensionalized, and 
compared with the analytical results presented in Section 4. The 
Nusselt number is computed by Eq.(8), while the bulk-fluid 
temperature is evaluated by Eq.(11). Furthermore, the 
assumptions stated in Section  0 are used in the numerical 
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analysis. Grid independence is tested for different cases and the 
size of computational grids is selected such that the maximum 
difference in the predicted values for the Nusselt number is less 
than 2%. 

 
3.5.  ALL-TIME MODEL 

A new all-time model is proposed in this section using a 
combination of the short-time and steady-state asymptotes, 
reported in Sections  3.2 and  3.3, in the following form: 

             ( ) ( )
1

( , ) n n n
D D DNu x t Nu t Nu x = +               (27) 

Where ( ),DNu x t  is the all-time Nusselt number, whereas 

( )DNu t  and ( )DNu x  are short-time and steady state 
asymptotes, respectively. This method of combining asymptotic 
solutions, also known as blending technique, was introduced by 
Churchill and Usagi [26].This approach assumes that a smooth 
transition occurs  between the two asymptotes. The parameter n 
introduced in Eq. (27) may be chosen using a number of 
methods as discussed by Churchill and Usagi [26]. In this 
study, the parameter n is chosen as the value which minimizes 
the root mean square (RMS) difference between the model 
predictions and the present numerical data. 

 
4.  RESULTS AND DISCUSSION 

Several new closed-form compact relations are developed 
for different flow conditions considered here. The obtained 
results are categorized and described in the following sections. 

 
4.1.  SLUG FLOW (SF) CONDITION  

The following all-time models are developed to predict the 
Nusselt number of the Slug Flow (SF) condition over the entire 
range of the Fourier number. 

( )

1
10 10

10

1

1
10 10

10

1 0.2

, 4

(8) 0.2

D

for X
Fo

XNu x t X

for X
Fo

π

π π

π

−


  
  
     + <           − − =     

    

   + ≥     

(28) 

Variations of the asymptotic Nusselt numbers versus the 
Fourier number for the Slug Flow (SF) condition are plotted in 
Fig. 6 and compared with our numerical data. In addition, the 
present all-time model for SF condition, Eq.(28), is illustrated 
in Fig. 7, and compared with numerical and asymptotic results. 
The agreement between the present all-time model and the 
numerical data is excellent, the maximum and average relative 
difference are approximately 6 and 1%, respectively. The 
following can be concluded from Figs. 6 and 7: 

•  At the short-time limit, 0Fo → , heat transfer only 
occurs via  conduction.  

• At a given axial position, 4 /
Re.Pr

x DX = , Nusselt number 

values are stabilized at the steady-state condition          
( Fo → ∞ ).  Therefore, at initial times the Nusselt 
number is only a function of time, not the axial 
location. On the other hand, at the steady-state 
condition, Fo → ∞ , the Nusselt number is only a 
function of axial position. Over the transition period, 
heat transfer is a function of both time and axial 
position.   

• The Nusselt number decreases drastically with time; 
also reduces with the axial position along the channel. 

• Comparing short-time and steady-state asymptotes, it 
is noteworthy to mention that the heat transfer at initial 
times is several orders of magnitude higher than that 
of the larger Fo numbers. 

4.2. HYDRODYNAMICALLY FULLY DEVELOPED FLOW 
(HFDF)  
 
Similarly, the following all-time relationship, Eq.(29), is 

developed to predict the Nusselt number for the 
Hydrodynamically Fully Developed Flow (HFDF) condition 
for the entire range of the Fourier number. 
 

   

1
7 73

107 10
9

( , )

555.364 1 1

DNu x t

X
Fo
π

π

−

=

  
         + + −                  

      (29) 

It should be noted that the maximum and average relative 
difference between the numerical data and the all-time model, 
Eq.(29), are 9 and 1.6%, respectively.  

 
4.3. SIMULTANEOUSLY DEVELOPING FLOW (SDF)  

The following all-time compact relation is proposed for the 
Simultaneously Developing Flow (SDF) condition. 

        ( ) ( )
1/1010

10
,D DNu x t Nu x

Fo
π   = +      

   
             (30) 

Where ( )DNu x  is the steady-state asymptote for the SDF 
condition defined by Eq.(26). The maximum and average 
relative difference between the values predicted by Eq. (30) and 
the numerical data are 6 and 1.5%, respectively. The 
correlations presented in this study are summarized in Table 2. 
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Figure 6. Comparison between the asymptotic, Eq. 
(19), and numerical Nusselt numbers against the 

Fourier number for the SF condition. 

 
 

 
Figure 7. Variations of the Nusselt number 

predicted by the present all-time model, Eq. (30),  
versus the Fourier number for SF condition in 

comparison with the numerical/asymptotic results, 
Eq. (19). 

 
 

Table 2. Present all-time model for different cases considered in this study. 

Flow 
condition 

All-time model 
( ),DNu x t  

Steady-state asymptote 
( )DNu x  

SF ( ) ( )
1/1010 10

D DNu t Nu x +   

11

0.2
4

8 0.2

X for X
X

for X

π π
−−   − − <      

 ≥
 

 

HFDF ( ) ( )
1/77 7

D DNu t Nu x +   

3/1010
9555.364 1 1X

π

− 
  + −   

   

SDF ( ) ( )
1/1010 10

D DNu t Nu x +   

1/ 62

1/33/2

1/ 2 1/32/3 2

4.364 1
29.6

19.041
Pr1 1

0.0207 55

X

X

X

π

π

π

    + ×   
     

  
  
   +   

        + +        
             

 

 Short-time asymptote:

 

( )DNu t
Fo
π

=  

5. CONCLUSION 
A new compact analytical model is developed to predict 

the full-range-time forced convection heat transfer inside a 

circular tube following a step change in the wall heat flux. The 
present model is developed using on a blending technique to 
match the two asymptotes corresponding to transient pure 
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conduction in an infinite cylinder and the steady-state 
convection heat transfer inside an iso-heat-flux tube. Slug 
Flow (SF), Hydrodynamically Fully Developed Flow (HFDF), 
and Simultaneously Developing Flow (SDF) conditions are 
taken into account, and several all-time relations are 
developed to predict the Nusselt number for the entire range of 
the Fourier and Prandtl numbers.  

 
The highlights of this study are listed below: 

• At initial times, 0Fo → , irrespective of the fluid 
velocity distribution, the heat transfer occurs only via 
conduction, and the Nusselt number is only a 
function of time, ( )DNu t . 

• At steady-state condition, Fo → ∞ , the Nusselt 
number is only a function of axial position, ( )DNu x . 

• There is a smooth transition from transient to steady-
state condition where the Nusselt number is a 
function of both time and axial position. 

• The Nusselt number at initial times is remarkably 
higher than that of the steady-state condition. 

• The fluid bulk temperature along the channel is only 
a function of time at initial times, while it stabilizes at 
each axial position as it reaches the steady-state 
condition.  

The analytical results are successfully validated against 
the numerical data obtained independently in this study. The 
maximum relative difference between the analytical model 
and the numerical data is less than 9.1%.  
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